

The Polynomial Complexity of Vector Addition Systems with States

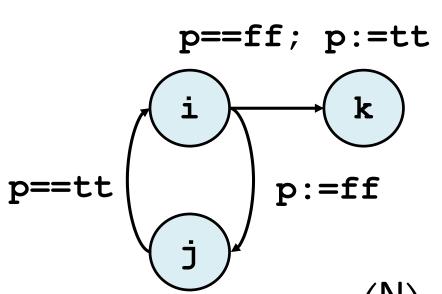
Florian Zuleger
TU Wien
Alpine Verification Meeting
9.9.2019

Vector Addition Systems (with States)

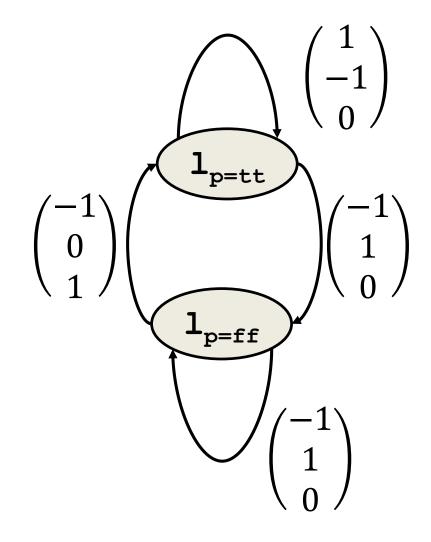
- Vector Addition Systems (VAS) = Petri Nets
- Basic Model for Parellel Processes

- Vector Addition Systems with States (VASS) = VAS + finite control
- Basic model for concurrent systems
- Finite control allows to model communication primitives, such as shared finite memory

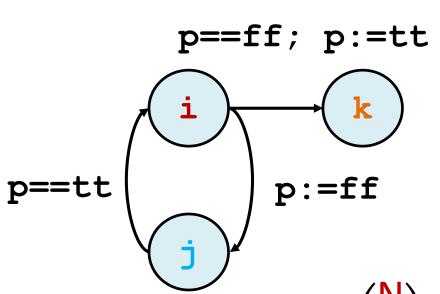
Process Template



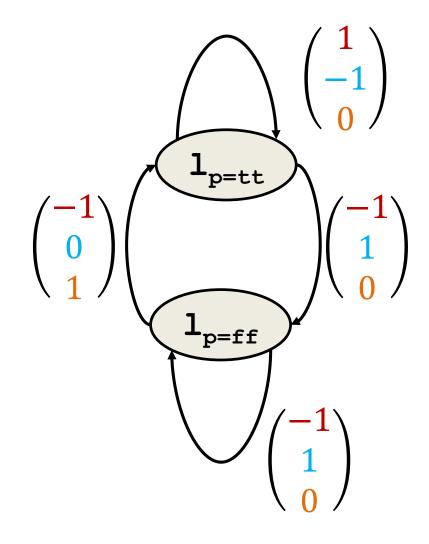
Initial State: $(1_{p=tt}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix})$



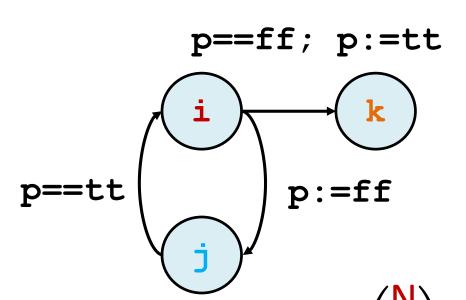
Process Template



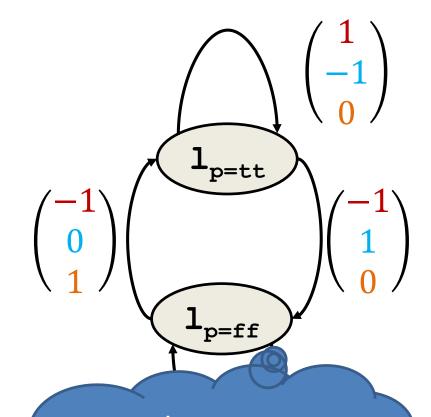
Initial State: $(1_{p=tt}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix})$



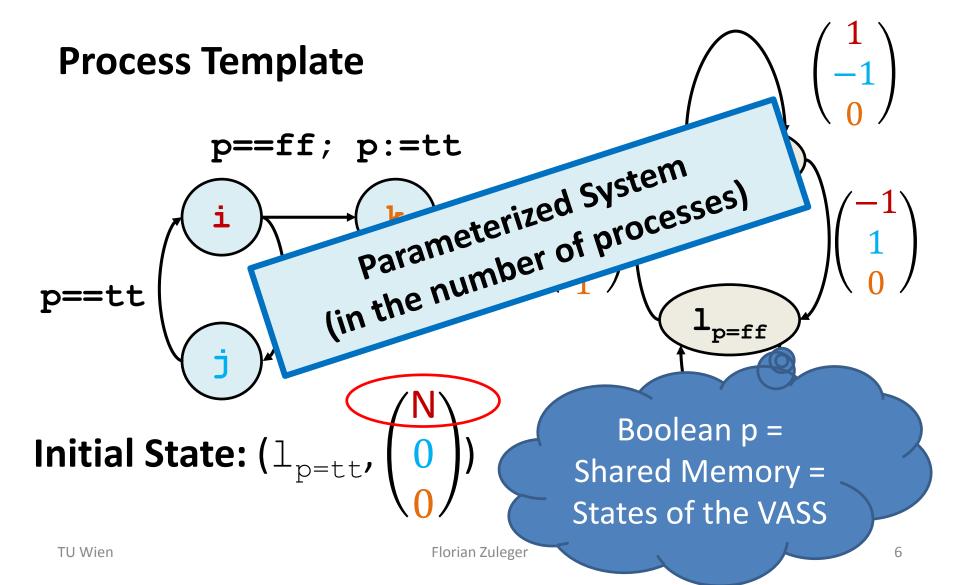
Process Template



Initial State: $(1_{p=tt}, \begin{pmatrix} 0 \\ 0 \end{pmatrix})$

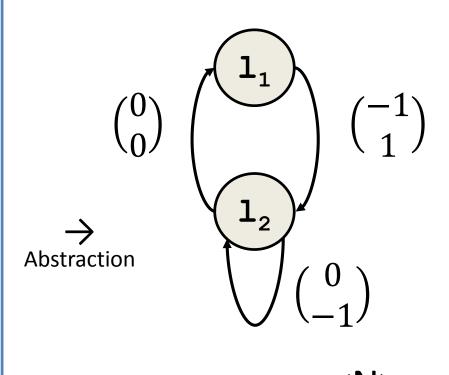


Boolean p = Shared Memory = States of the VASS



Program Analysis

```
void main(uint N) {
   uint i=N, j=N;
l_1: while (i>0) {
    j++;
   while(j>0 && *)
```

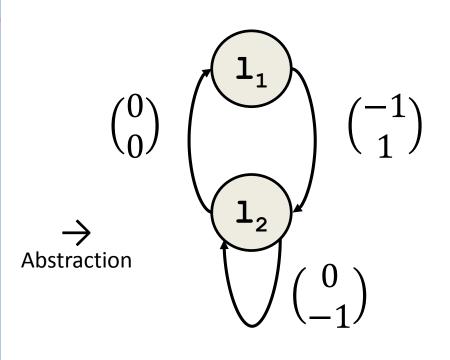


Initial State: $(1_1, {N \choose N})$

Abstractions to VASSs: CAV'14, FMCAD'15, JAR'17

Program Analysis

```
void main(uint N) {
   uint i=N, j=N;
l_1: while (i>0) {
    j++;
   while(j>0 && *)
```



Initial State: (1(1, (1)))

Abstractions to VASSs: CAV'14, FMCAD'15, JAR'17

Program Analysis

```
void main(uint N) {
   uint i=N, j=N;
l_1: while (i>0) {
                  Parameterized System
                    (in the input value)
    j++;
    while (
                          Initial State: (2
```

Abstractions to VASSs: CAV'14, FMCAD'15, JAR'17

Semantics of VASS

Valuation = Ndimension of VASS

Configurations = States x Valuations

Steps = Set of all
$$(1_1, v_1) \xrightarrow{u} (1_2, v_2)$$

such that $1_1 \xrightarrow{u} 1_2$ is a transition,
 $v_1 + u \ge 0$ and $v_2 = v_1 + u$.

VASS Termination

Termination (for all initial states):

is there an infinite sequence

$$(1_1, v_1) \xrightarrow{U_1} (1_2, v_2) \xrightarrow{U_2} (1_3, v_3) \cdots ?$$

Termination (for fixed initial state $(1_1,v_1)$):

is there an infinite sequence

$$(1_1,v_1) \xrightarrow{U_1} (1_2,v_2) \xrightarrow{U_2} (1_3,v_3) \cdots ?$$

Classical Results

Termination (for all initial states):

is there an infinite sequence

$$(1_1,v_1) \xrightarrow{U_1} (1_2,v_2) \xrightarrow{U_2} (1_3,v_3) \cdots ?$$

PTIME (Kosaraju and Sullivan 88')

Termination (for fixed initial state $(1_1,v_1)$):

is there an infinite sequence

$$(1_1, v_1) \xrightarrow{U_1} (1_2, v_2) \xrightarrow{U_2} (1_3, v_3) \cdots ?$$

EXPSPACE (Lipton 76', Rackoff 78')

Computational Complexity of VASSs

Termination (for all initial states):

is there an infinite sequence

$$(1_1, v_1) \xrightarrow{U_1} (1_2, v_2) \xrightarrow{U_2} (1_3, v_3) \cdots ?$$

Computational Complexity:

Compute a function comp(N) such that the length of the longest sequence

$$(1_1,v_1) \xrightarrow{U_1} (1_2,v_2) \xrightarrow{U_2} (1_3,v_3) \dots,$$

with $|v_1| = \max_i v_1(i) \le N$, has comp(N) steps?

Recent Results

Computational Complexity:

 $comp(N) \in P \text{ or } comp(N) \in 2^{\Omega(N)}$

PTIME (Leroux 18)

Computational Complexity:

comp(N) $\in \Theta(N^i)$, for some computable integer $1 \le i \le dimension$ of VASS, for some VASS with a "positive normal", i.e., every reachable configuration is linearly bounded in the initial configuration

PTIME (Brázdil, Chatterjee, Kucera, Novotný, Velan, Z 18)

Recent Results

Computational Complexity:

 $comp(N) \in P \text{ or } comp(N) \in 2^{\Omega(N)}$

PTIME (Leroux 18)

Computational Complexity:

comp(N) $\in \Theta(N^i)$, for some computable integer $1 \le i \le dimension$ of VASS, for some VASS with a "positive normal", i.e., every reachable configuration is linearly bounded in the initial configuration

In this talk we generalize both results

PTIME (Brázdil, Chatterjee, Kucera, Novotný, Velan, Z 18)

Results of this talk

Computational Complexity:

comp(N) $\in \Theta(N^i)$, for some integer $1 \le i \le 2^{\text{dimension of VASS}}$, or comp(N) $\in 2^{\Omega(N)}$

PTIME

Results of this talk

Computational Complexity:

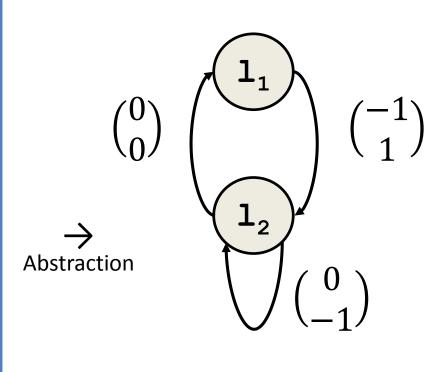
comp(N) $\in \Theta(N^i)$, for some integer $1 \le i \le 2^{\text{dimension of VASS}}$, or comp(N) $\in 2^{\Omega(N)}$

Full characterization of VASSs with polynomial complexity (e.g., there is no VASS with complexity N*log(N))

PTIME

Possible Application: Automated Complexity Analysis

```
void main(uint N) {
   uint i=N, j=N;
l_1: while (i>0) {
    j++;
   while(j>0 && *)
```

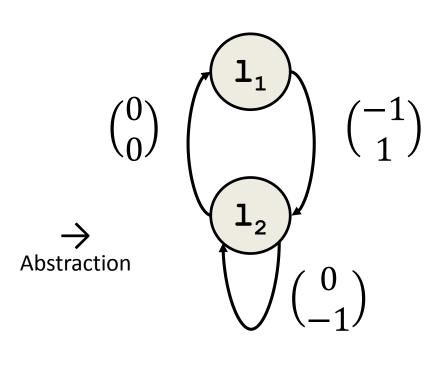


Initial State: $(1_1, \binom{N}{N})$

Complexity: Θ(N)

Possible Application: Automated Complexity Analysis

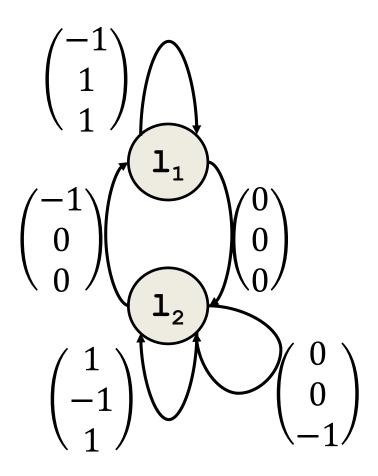
```
void main(uint N) {
   uint i=N, j=N;
l_1: while (i>0) {
    j++;
   while(j>0 && *)
```



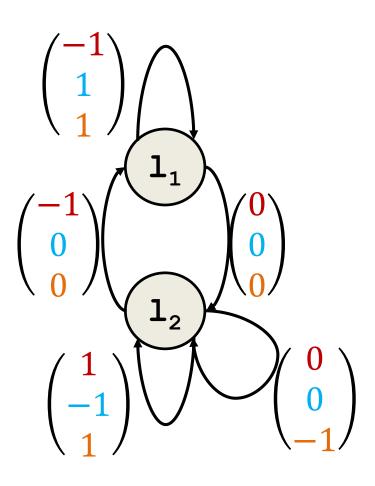
Initial State: $(1_1, \binom{N}{N})$

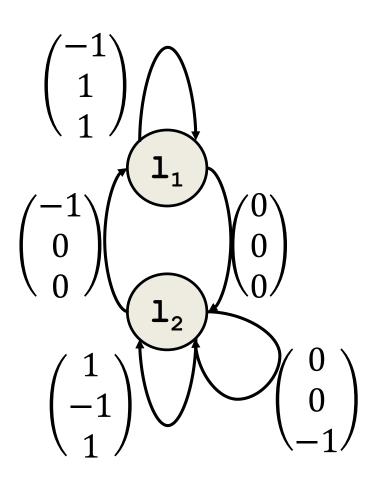
Complexity: $O(N) \leftarrow Complexity: O(N)$

Example



Notation: Variables for Vector Components





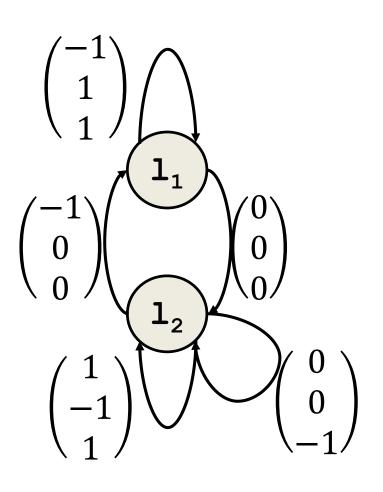
Find coefficients $a,b,c,d(l_1),d(l_2) \in \mathbb{N}$ such that

$$ax + by + cz + d(I_i) \ge$$

 $ax' + by' + cz' + d(I_i)$

for all steps

$$(1_{i},\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix})$$



Find coefficients $a,b,c,d(l_1),d(l_2) \in \mathbb{N}$ such that

$$ax + by + cz + d(I_i) \ge$$

 $ax' + by' + cz' + d(I_i)$

for all steps

$$(1_{i},\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix})$$

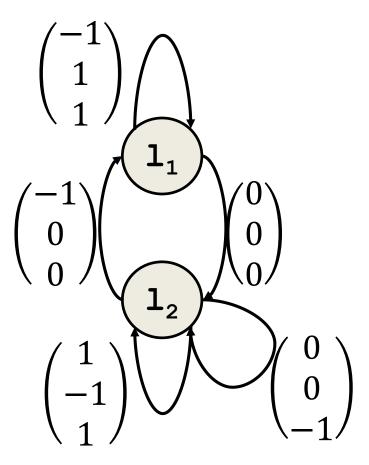
Solution:

$$c=0$$

$$d(l_1)=1$$

$$d(l_2) = 0$$

 $">0" \rightarrow x$,y are linearly bounded: O(N)



Find coefficients $a,b,c,d(l_1),d(l_2) \in \mathbb{N}$ such that

$$ax + by + cz + d(I_i) \ge$$

 $ax' + by' + cz' + d(I_i)$

for all steps

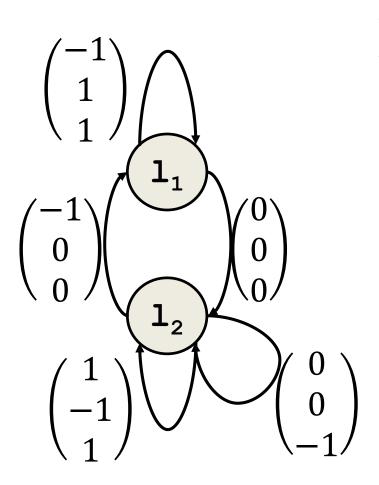
$$(l_{i},\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \longrightarrow (l_{j},\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix})$$

Solution:

$$c=0$$

$$d(l_1)=1$$

$$d(l_2)=0$$



">0" → x,y are linearly bounded: O(N) "=0" → z is not linearly bounded

Find coefficients $a,b,c,d(l_1),d(l_2) \in \mathbb{N}$ such that

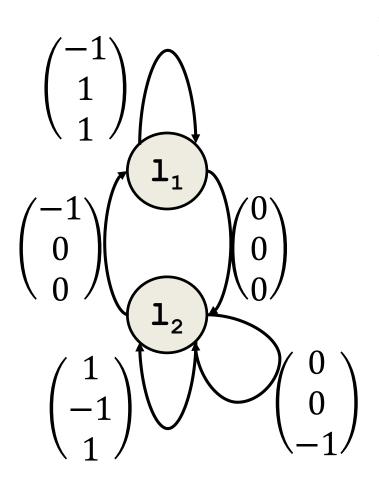
$$ax + by + cz + d(I_i) \ge$$

 $ax' + by' + cz' + d(I_i)$

Solution: a=2 b=2 c=0 $d(I_1)=1$ $d(I_2)=0$

for all steps

$$(1_{i},\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix})$$

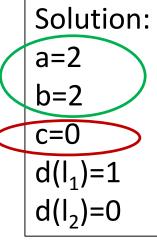


">0" → x,y are linearly bounded: O(N) "=0" → z is not linearly bounded

Find coefficients $a,b,c,d(l_1),d(l_2) \in \mathbb{N}$ such that

$$ax + by + cz + d(I_i) \ge$$

 $ax' + by' + cz' + d(I_i)$

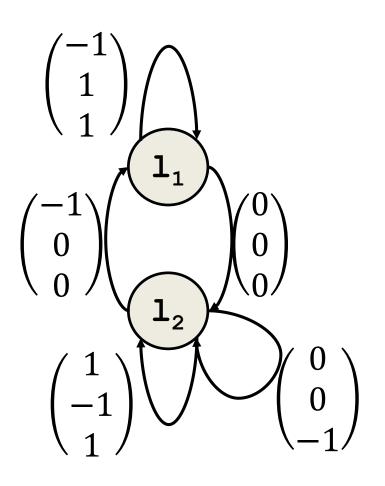


for all steps

Linear Programming

$$(1_{i},\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix})$$

Step 1b: Remove decreasing transitions



We are actually interested in coefficients such that

$$ax + by + cz + d(I_i) >$$

 $ax' + by' + cz' + d(I_i)$

Solution:

$$c=0$$

$$d(l_1)=1$$

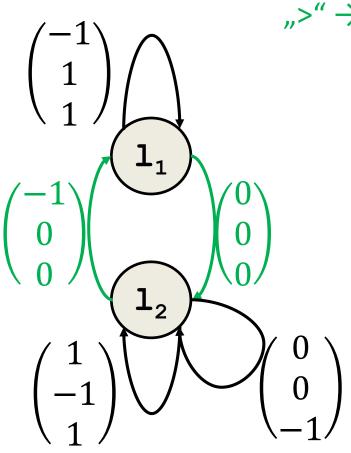
$$d(l_2)=0$$

for as many steps as possible

$$(1_{i},\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix})$$

Step 1b: Remove decreasing transitions

 $">" \rightarrow$ linearly bounded: O(N)



We are actually interested in coefficients such that

$$ax + by + cz + d(I_i) >$$

 $ax' + by' + cz' + d(I_i)$

Solution:

$$c=0$$

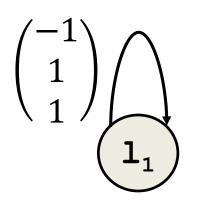
$$d(I_1)=1$$

$$d(l_2)=0$$

for as many steps as possible

$$(1_{i},\begin{pmatrix}x\\y\\z\end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix}x'\\y'\\z'\end{pmatrix})$$

Step 1b: Remove decreasing transitions



 $">" \rightarrow$ linearly bounded: O(N)

We are actually interested in coefficients such that

$$ax + by + cz + d(I_i) >$$

 $ax' + by' + cz' + d(I_i)$

Solution: a=2 b=2

$$d(l_1)=1$$

c=0

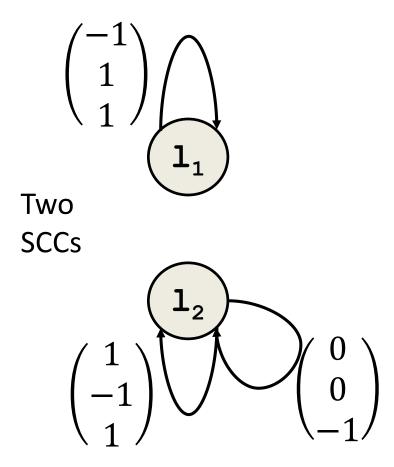
$$d(l_2)=0$$

for as many steps as possible

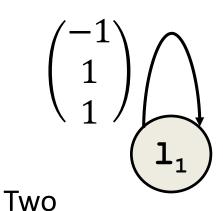
$$(1_{i},\begin{pmatrix}x\\y\\z\end{pmatrix}) \longrightarrow (1_{j},\begin{pmatrix}x'\\y'\\z'\end{pmatrix})$$

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

Step 2a: Find quadratically bounded variables



Step 2a: Find quadratically bounded variables



SCCs

Find coefficients

$$a_1,b_1,a_2,b_2,c, d(l_1), d(l_2) \in \mathbb{N}$$
 such that

$$a_1x + b_1y + cz + d(I_1) \ge a_1x' + b_1y' + cz' + d(I_1)$$

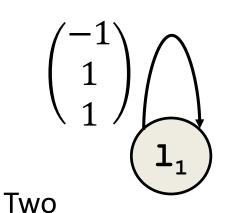
for all steps of SCC I₁, and

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 1_2 \\ 0 \\ -1 \end{pmatrix}$$

$$a_2x + b_2y + cz + d(l_2) \ge$$

 $a_2x' + b_2y' + cz' + d(l_2)$
for all steps of SCC l_2 .

Step 2a: Find quadratically bounded variables

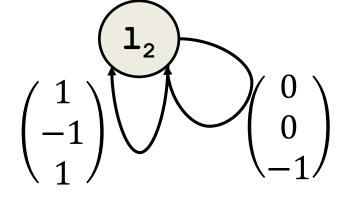


SCCs

Find coefficients $a_1,b_1,a_2,b_2,c,d(l_1),d(l_2) \in \mathbb{N}$ such that

$$a_1x + b_1y + cz + d(I_1) \ge a_1x' + b_1y' + cz' + d(I_1)$$

for all steps of SCC I₁, and



$$a_2x + b_2y + cz + d(I_2) \ge$$

 $a_2x' + b_2y' + cz' + d(I_2)$
for all steps of SCC I_2 .

Solution: $a_1=3$

$$b_1^1 = 1$$

$$b_1 = 1$$

$$a_2 = 1$$

$$b_2 = 3$$

$$c=1$$

$$d(I_1)=0$$

$$d(l_2)=0$$

Linear Programming

Step 2a: Find quadratically bounded variables

 $">0" \rightarrow z$ is quadratically

bounded: O(N2)

 $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$

Two

SCCs

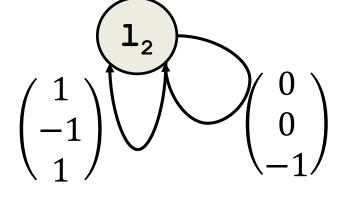
Find coefficients

 $a_1, b_1, a_2, b_2, c, d(l_1), d(l_2) \in \mathbb{N}$

such that

$$a_1x + b_1y + cz + d(I_1) \ge a_1x' + b_1y' + cz' + d(I_1)$$

for all steps of SCC I₁, and



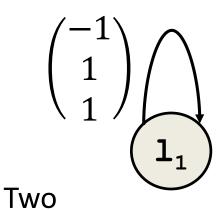
$$a_2x + b_2y + cz + d(l_2) \ge a_2x' + b_2y' + cz' + d(l_2)$$

for all steps of SCC I₂.

Solution: $a_1=3$ $b_1=1$ $a_2=1$ $b_2=3$ c=1 $d(I_1)=0$ $d(I_2)=0$

Linear Programming

Step 2b: Remove decreasing transitions



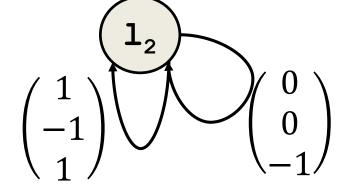
SCCs

We are actually interested in coefficients such that

$$a_1x + b_1y + cz + d(I_1) >$$

 $a_1x' + b_1y' + cz' + d(I_1)$

for as many steps of SCC I₁, and



$$a_2x + b_2y + cz + d(l_2) >$$

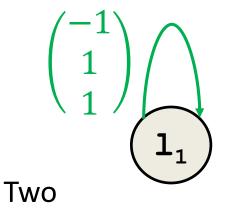
 $a_2x' + b_2y' + cz' + d(l_2)$

Solution: $a_1=3$ $b_1=1$ $a_2=1$ $b_2=3$ c=1 $d(l_1)=0$ $d(l_2)=0$

for as many steps of SCC l₂ as possible.

Step 2b: Remove decreasing transitions

">" \rightarrow quadratically bounded: O(N²)



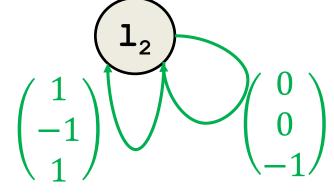
SCCs

We are actually interested in coefficients such that

$$a_1x + b_1y + cz + d(I_1) >$$

 $a_1x' + b_1y' + cz' + d(I_1)$

for as many steps of SCC I₁, and



$$a_2x + b_2y + cz + d(l_2) >$$

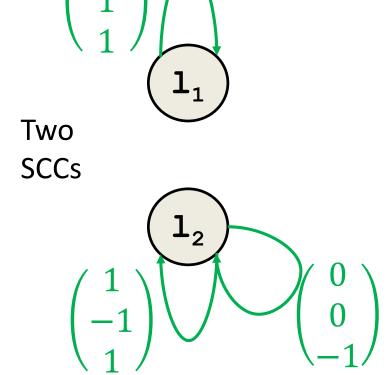
 $a_2x' + b_2y' + cz' + d(l_2)$

Solution: $a_1=3$ $b_1=1$ $a_2=1$ $b_2=3$ c=1 $d(I_1)=0$ $d(I_2)=0$

for as many steps of SCC I₂ as possible.

Do we also have the lower bound $\Omega(N^2)$?

quadratically bounded: O(N²)



Do we also have the lower bound $\Omega(N^2)$?

quadratically bounded: O(N²)

Yes!

Two **SCCs**

Do we also have the lower bound $\Omega(N^2)$? Yes!

quadratically bounded: O(N²)

Sum of

updates:

Consider the two cycles

$$\mathbf{l}_{1} \xrightarrow{\begin{pmatrix} -1\\1\\1 \end{pmatrix}} \mathbf{l}_{1} \xrightarrow{\begin{pmatrix} -1\\1\\1 \end{pmatrix}} \mathbf{l}_{1}$$

 $\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$

Two

Iteration scheme: Execute some cycle $\Omega(N)$ times, then the other cycle the same number of times. Do this $\Omega(N)$ times.

Do we also have the lower bound $\Omega(N^2)$? Yes!

quadratically bounded: O(N²)

Sum of

updates:

Consider the two cycles

$$\mathbf{l}_{1} \xrightarrow{\begin{pmatrix} -1\\1\\1 \end{pmatrix}} \mathbf{l}_{1} \xrightarrow{\begin{pmatrix} -1\\1\\1 \end{pmatrix}} \mathbf{l}_{1}$$

 $\begin{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} & \begin{pmatrix} 1 \\ -1 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ \mathbf{1}_2 & \xrightarrow{1} & \mathbf{1}_2 & \mathbf{1}_2 \end{bmatrix} \xrightarrow{\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}$

SCCs $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$

Two

- Cycles are extracted during Step 1
 by a dual linear program
- Iterations schemes always exists

Contributions

- Full characterization of VASSs with polynomial complexity
- PTIME algorithms promise to be of practical use
- Interesting application of duality in linear programming: during each step we find a ranking function or a set of cycles that prove an upper resp. lower complexity bound