FAKULTAT

for(syte
Faculty of Informatics y

The Polynomial Complexity of
Vector Addition Systems with States

Florian Zuleger
TU Wien
Alpine Verification Meeting
9.9.2019



Vector Addition Systems (with States)

Vector Addition Systems (VAS) = Petri Nets
Basic Model for Parellel Processes

Vector Addition Systems with States (VASS) =
VAS + finite control
Basic model for concurrent systems

Finite control allows to model communication
primitives, such as shared finite memory
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Concurrent Systems

Process Template

p==ff; p:=tt

: O

p==tt :=ff
N Boolean p =
Initial State: (1__.,{ 0 ]) L [y
0 States of the VASS
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Concurrent Systems

Process Template

. Boolean p =
Initial State: (1__.,{ 0 ]) L [y
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Program Analysis

void main (uint N) {
uint i=N, IJj=N;
1,: while (i>0) {

1,: while(j>0 && *)
J--

Abstraction
NI&

Initial State: (1, (:::))

Abstractions to VASSs: CAV‘14, FMCAD15, JAR‘17

TU Wien Florian Zuleger



Program Analysis

volid main (ui

uint i=N, j=N; Q
0 —1

1,: while (i>
1 w- i1le (i>0) { (O)
1--;
J++; > Q
1,: while(j>0 gg& *) | Abstraction ' ( 0)
J-—7

}
Initial State: (l
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Program Analysis
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Semantics of VASS

Valuation = Ndimension of VASS

Configurations = States x Valuations

u
Steps = Setof all (1,,v,) — (1,,v,)
such that 1, - 1, is a transition,

vi+u20andv, =v, +u.
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VASS Termination

Termination (for all initial states):
is there an infinite sequence

(1,vq) — (12,V2) (131V3)

Termination (for fixed initial state (1,,v,)):

is there an infinite sequence
(11/V1) (12)V2) (131\/3)



Classical Results

Termination (for all initial states):
is there an infinite sequence

(1,,v,) —— (l NVy) —— (13,v3)

PTIME (Kosaraju and Sullivan 88’)

Termination (for fixed initial state (1,,v,)):

is there an infinite sequence
(11/V1) (12)\/2) (131\/3)

EXPSPACE (Lipton 76, Rackoff 78°)
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Computational Complexity of VASSs

Termination (for all initial states):
is there an infinite sequence

(1,,vy)—=—(1, v2)—2—» (15,v3) -

Computational Complexity:

Compute a function comp(N) such that the length
of the longest sequence

(15,vy) — 2 (1,,v5)—22— (15,v3) -
with|v,| = max; v, (i) £ N, has comp(N) steps?



Recent Results

Computational Complexity:
comp(N) € P or comp(N) € 22N

PTIME (Leroux 18)

Computational Complexity:

comp(N) € O(N'), for some computable integer

1 <i < dimension of VASS, for some VASS with a “positive
normal”, i.e., every reachable configuration is linearly
bounded in the initial configuration

PTIME (Brazdil, Chatterjee,
Kucera, Novotny, Velan, Z 18)
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Results of this talk

Computational Complexity:
comp(N) € ©(N'), for some integer 1 <i <

2dimension ofVASS’ or comp(N) = zQ(N)
PTIME
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Results of this talk

Computational Complexity:
comp(N) € O(N'), for some integer 1 <i <

zdimension ofVASS’ or comp(N) = 20(N)
PTIME

Full characterization of
VASSs with polynomial

complexity
(e.g., there is no VASS with
complexity N*log(N) )
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Possible Application:
Automated Complexity Analysis

void main (uint N) {

uint i=N, j=N; Q
0 —1

1,: while (i>0) { (0)

1,: while(j>0 && *) | Abstraction ' ( 0)
J-=

Initial State: (1, (N))
Complexity: O(N)
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Example




Notation:
Variables for Vector Components
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Step 1a: Find linearly bounded
variables

-1
1 Find coefficients
1 a,b,c, d(l,), d(l,) €N

such that

_01 8 ax + by +cz+d(l) 2
ax' + by +cz’ + d(l)
0 Q 0

for all steps
)
0 X X
( ) (1i,(y>) — (1j,<y'>)
Z /

Y4
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Step 1a: Find linearly bounded

TU Wien

variables

Find coefficients
a,b,c, d(l,), d(l,) €N
such that

ax + by +cz+d(l) 2
ax' + by +cz’ + d(l)

Solution:
a=2

b=2

c=0
d(l,)=1
d(l,)=0

for all steps

X X'
(li,(y>) — (lj,<y'>)
Z 7'
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Step 1a: Find linearly bounded

variables
,>0“ = x,y are linearly bounded: O(N)
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Find coefficients Solution:

a,b,c, d(l,), d(l,) €N < 3=2
such that b=2

c=0
ax + by+CZ+d(|i)Z d(l )=1
ax' + by +cz’ + d(l) d(Ii)=O

for all steps

X X'
(li,(v>) — (lj,<y'>)
Z 7’



Step 1a: Find linearly bounded

variables
,>0“ = x,y are linearly bounded: O(N)

—1 ,=0“ = zis not linearly bounded
1 Find coefficients Solution:
1 alblcl d(ll)l d(lz) € N a=2
G such that < b=2
c=0
8 ax + by +cz+d(l) 2 <%(Il)?1
0 ax' + by +cz’ + d(l) d(1,)=0
Q for all steps
1 0
0 X X'
(li,(v>) — (L.,{y'))
Z /

Y4
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Step 1a: Find linearly bounded

variables

,>0“ = x,y are linearly bounded: O(N)

_1 ,=0“ = zis not linearly bounded
Find coefficients Solution:

a,b,c, d(l,), d(l,) €N < 3=2

G such that b=2

c=0
1 8 ax + by +cz+d(l) 2 <%(|1)?1

0 ax' + by +cz’ + d(l) d(1,)=0
Q for all steps

p—

1 1

’ 0 Linear Programming
-1 ' ( 0 ) " ’
(li,(v>) — (lj,<y'>)

Z Z
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Step 1b: Remove decreasing
transitions

—1
1 We are actually Solution:
1 interested in a=2

coefficients such that | p=2

—1 G O c=0
ax + by + cz +d(l) > d(l.)=1

0 0 ax'+ by’ +cz'+ d(l) '

O e O J d(|2)=0

’ for as many steps as possible
0
0 X X
(li,(v>) — (1,{y"|)
Z 7’
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Step 1b: Remove decreasing

TU Wien

transitions

,>“ = linearly bounded: O(N)

We are actually
interested in
coefficients such that

ax + by + cz +d(l) >
ax' + by +cz’ + d(l)

Solution:
a=2

b=2

c=0
d(l,)=1
d(l,)=0

for as many steps as possible
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Solution:
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Step 2a: Find quadratically
bounded variables



Step 2a: Find quadratically
bounded variables

Find coefficients

<—1> a,b,,a,,b,.c, d(l,),d(,) €N
1 such that
1

ax+by+cz+d(l,) =
TWo ax'+by +cz'+d(l,)
SCCs for all steps of SCC1,, and

a,x + b,y + cz +d(l,) 2

0 a,x' + b,y +cz’ + d(l,)
( 0 ) for all steps of SCC |,
—1
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Step 2a: Find quadratically
bounded variables

Find coefficients

-1 a,,by,a,,b,,c, d(l,), d(l,) €N .
1 such that Solution:
1 a;=3
ax+by+cz+d(l,) = b,=1
TWO a,x'+byy'+cz'+d(l) =1
SCCs for all steps of SCC|,, and 5313
a,x + by +cz+dl,) 2 d(l;)=0

0
—1

0 a,x' + b,y +cz’ + d(l,) d(l,)=0
( ) for all steps of SCC |,.

Linear Programming
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Step 2a: Find quadratically

bounded variables
,>0“ = zis quadratically

Find coefficients bounded: O(N2)
-1 a,,by,a,,b,,c, d(l,), d(l,) €N .
1 such that Solution:
1 a;=3
ax+by+cz+d(l,) = b,=1
TWO a,x'+byy'+cz'+d(l) Ezi
SCCs for all steps of SCC I,, and 2_
Je=1 D
a,x + by +cz+dl,) 2 d(l;)=0

0
—1

0 a,x' + b,y +cz’ + d(l,) d(l,)=0
( ) for all steps of SCC |,.

Linear Programming
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Step 2b: Remove decreasing

transitions
-1 We are actually interested :
1 in coefficients such that Solution:
1 a;=3
a,x+byy+cz+d(l) > b,=1
TWo a;x' + by +cz’ +d(l,) a=1
b,=3
SCCs for as many steps of SCC |, and cil
a,x + by +cz+d(l,) > d(l,)=0

0
—1

for as many steps of SCC |, as possible.

( 0 ) a,x' + b,y +cz’ + d(l,) d(l,)=0
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Step 2b: Remove decreasing

transitions |
,>" —> quadratically
bounded: O(N?)
-1 We are actually interested :
1 in coefficients such that Solution:
1 a,=3
a,x+byy+cz+d(l) > b,=1
Two ayx + by’ +cz’ +d(ly) Zzi;
SCCs for as many steps of SCC |,, and ci_l
a,x + by +cz+d(l,) > d(l,)=0

0
—1

for as many steps of SCC |, as possible.

( 0 ) a,x' + b,y +cz’ + d(l,) d(l,)=0
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Precision?

Do we also have the

—1 lower bound Q(N?)?
1

Two
SCCs
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quadratically
bounded: O(N?)
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Two
SCCs
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—1
1
1

Precision?

Do we also have the
) lower bound Q(N2)? Yes!
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quadratically
bounded: O(N?)
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Precision?

guadratically

Do we also have the bounded: O(N?)

(—1) lower bound Q(N?)? Yes!

1
1 Consider the two cycles _
<—11> <—11> Sum of
updates:

SCCs - (0
1 1 0 1
0\ 1,1, 141,714
O |iteration scheme: Execute some cycle
—1/ Q(N) times, then the other cycle the same

number of times. Do this Q(N) times.
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Precision?

guadratically

Do we also have the bounded: O(N?)

(—1) lower bound Q(N?)? Yes!

1
1 Consider the two cycles _
<—11> <—11> Sum of
updates:

SCCs - (0
1 1 0 1
(). () ()
0\ 1,1, 141,714
0 * Cycles are extracted during Step 1
-1 by a dual linear program

* |terations schemes always exists
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Contributions

* Full characterization of VASSs with polynomial
complexity

 PTIME algorithms promise to be of practical
use

* |Interesting application of duality in linear
programming: during each step we find a
ranking function or a set of cycles that prove
an upper resp. lower complexity bound



